Selasa, 13 Januari 2015

sejarah proyektor,sejarah kamera,format rekam,aspect ratio,frame persecond,teknologi kamera terbaru

SEJARAH PROYEKTOR
Sejarah Proyektor hampir sama dengan kamera. Sejauh abad ke-4 SM, Yunani seperti Aristoteles dan Euclid wrote on terjadi secara alamiah kamera lubang jarum dasar. Misalnya, cahaya dapat perjalanan melalui celah keranjang rotan atau daun pohon penyeberangan. [1] (Para Dapples melingkar di lantai hutan, gambar sebenarnya lubang jarum matahari, dapat dilihat untuk memiliki gigitan dibawa keluar dari mereka selama gerhana matahari parsial berlawanan dengan posisi aktual kegaiban bulan matahari karena efek lensa pembalik lubang jarum.)Ini adalah abad ke-10 Ibn al-Haytham (Alhazen), yang menerbitkan ide dalam Kitab Optik di 1021 Masehi. Ketika Ibn al-Haytham mulai bereksperimen dengan kamera obscura, ia sendiri menyatakan, Et nos inventimus non ita, "kami tidak menemukan ini". [2] Dia meningkat pada kamera setelah menyadari bahwa semakin kecil lubang jarum, semakin tajam gambar (meskipun kurang cahaya). Ia menyediakan gambaran jelas pertama untuk pembangunan kamera obscura (kamar gelap Lat.). Sebagai sisi manfaat dari penemuan itu, ia dikreditkan dengan menjadi orang pertama untuk beralih fisika dari filosofis terhadap basis eksperimental. [3]Pada abad ke-5 SM, filsuf Mohist Mo Jing di Cina kuno yang disebutkan efek membentuk sebuah gambar terbalik melalui lubang jarum [4]. Gambar dari sebuah pagoda Cina terbalik disebutkan dalam Duan Chengshi itu (w. 863) Buku Miscellaneous potongan dari Youyang ditulis pada masa Dinasti Tang (618-907) [5] Seiring. dengan bereksperimen dengan kamera lubang jarum dan cermin pembakaran Mohis kuno, Dinasti Song (960-1279 M) Cina ilmuwan Shen Kuo (1031 -1095) bereksperimen dengan kamera obscura dan adalah yang pertama untuk menetapkan atribut geometri dan kuantitatif untuk itu [5].Kamera lubang jarum Kuno efek yang disebabkan oleh balistrarias di Castelgrande di BellinzonaPada abad 13, Robert Grosseteste dan Roger Bacon berkomentar pada kamera lubang jarum. [6] Antara 1000 dan 1600, orang-orang seperti Ibn al-Haytham, Gemma Frisius, dan Giambattista della Porta menulis tentang kamera lubang jarum, menjelaskan mengapa gambar terbalik. Perangkat lubang jarum menyediakan keamanan untuk mata saat melihat gerhana matahari karena acara ini diamati secara tidak langsung, intensitas berkurang dari gambar lubang jarum yang tidak berbahaya dibandingkan dengan silau penuh dari Matahari itu sendiri.[Sunting] proyektor gambar pertamaCatatan pertama yang diketahui tentang apa yang mungkin menggambarkan ide memproyeksikan gambar pada permukaan adalah gambar oleh Johannes de Fontana dari 1420. Gambar ini dari seorang biarawati memegang sesuatu yang mungkin lentera. Lentera memiliki jendela tembus kecil yang berisi gambar setan memegang [1] tombak. Leonardo da Vinci juga membuat sketsa serupa di 1515. Gambar-gambar ini mungkin telah mengilhami penciptaan proyektor gambar awal, perangkat yang disebut lentera ajaib.Pada abad ke-17, sebuah lentera ajaib yang pertama dikembangkan. Dengan kamera lubang jarum dan kamera obscura itu hanya mungkin untuk memproyeksikan citra dari adegan yang sebenarnya, seperti gambar matahari, pada permukaan. Lentera ajaib di sisi lain bisa memproyeksikan gambar dilukis di permukaan, dan menandai titik di mana kamera dan proyektor menjadi dua macam perangkat. Ada beberapa perdebatan tentang siapa penemu asli dari lentera sihir, tetapi teori yang paling banyak diterima adalah bahwa Christiaan Huygens mengembangkan perangkat asli di akhir 1650-an. [7] Namun, sumber-sumber lain memberikan kredit kepada imam Athanasius Kircher Jerman . Dia menjelaskan perangkat seperti lentera ajaib di Ars Magna bukunya Lucis et Umbrae [8]. [9] Ada yang mungkin menyebutkan perangkat ini dikaitkan dengan Kircher sedini 1646. Bahkan dalam penggunaannya awal, ditunjukkan dengan gambar mengerikan seperti Iblis [10] perangkat Huygen ini bahkan disebut sebagai "lentera ketakutan" karena mampu memproyeksikan gambar menyeramkan yang terlihat seperti penampakan-penampakan.. [11] Dalam pengembangan awal, itu kebanyakan digunakan oleh penyihir dan pesulap untuk gambar proyek, membuat mereka muncul atau menghilang, berubah dari satu adegan ke adegan yang berbeda, biasanya benda bernyawa mati, atau bahkan membuat kepercayaan membawa kembali orang mati. [ 12] Pada 1660-an, seorang pria bernama Thomas Walgensten digunakan apa yang disebut "lentera ketakutan" untuk memanggil hantu. Ini penyalahgunaan dari mesin awal tidak biasa. Bahkan, sebuah setup yang umum dari mesin ini adalah untuk menjaga bagian dari proyektor di ruangan yang terpisah yang berdampingan dengan hanya aperture terlihat, untuk membuatnya tampak lebih magis dan menakut-nakuti orang. Pada abad ke-18, digunakan oleh penipu adalah umum untuk alasan agama. Misalnya, Count Cagliostro menggunakannya untuk 'membangkitkan semangat mati' di batu Mesir. Johann Georg Schröpfer digunakan lentera ajaib untuk menyulap gambar orang mati di asap. Dia melakukan hal ini dipentaskan rutinitas di kedai kopi di Leipzig. Dia melakukan ini untuk menakut-nakuti orang dan membuat mereka berpikir ia adalah seorang aktor yang baik. Schröpfer akhirnya pergi gila dan berpikir dia sendiri dikejar oleh setan yang nyata, dan menembak dirinya sendiri setelah menjanjikan penonton ia kemudian akan membangkitkan dirinya sendiri [13].[Sunting] Abad ke-20 untuk hari iniPada bagian awal dan pertengahan abad ke-20, tipe baru berbiaya rendah yang disebut proyektor proyektor buram diproduksi dan dipasarkan sebagai mainan untuk anak-anak. Proyektor buram adalah pendahulu ke proyektor overhead. Sumber cahaya di proyektor buram awal sering pusat perhatian. Bola lampu pijar dengan lampu halogen mengambil alih kemudian.Pada akhir 1950-an dan awal 1960-an, proyektor overhead mulai digunakan secara luas di sekolah-sekolah dan bisnis. Proyektor overhead yang pertama digunakan untuk pekerjaan identifikasi polisi. Ini digunakan gulungan plastik selama tahap 9-inch memungkinkan karakteristik wajah akan diluncurkan di panggung. Angkatan Darat AS pada tahun 1945 adalah yang pertama untuk menggunakannya dalam kuantitas untuk pelatihan sebagai Perang Dunia II luka bawah.Jenis lain disebut proyektor proyektor slide yang umum pada 1950-an sampai 1970-an sebagai bentuk hiburan; anggota keluarga dan teman-teman akan berkumpul untuk melihat slideshow.Di akhir abad ke-20, slide dan transparansi diganti dengan gambar digital.
sumber : http://projectorproyektor.blogspot.com/2012/02/sejarah-proyektor.html 

Sejarah Perkembangan Kamera

Kamera yang dimiliki oleh jutaan orang di dunia bahkan setiap orang pasti memiliki apa itu kamera, entah kamera ponsel, kamera poket, maupun DSLR. Perkembangan kamera semakin cepat dan canggih. Kamera memiliki sejarah tersendiri. Sejarah Perkembangan kamera digital berawal dari jaman dahulu. Saya akan menceritakan sejarah kamera dari Obscura hingga kamera DSLR.



1. Kamera Obscura




Kamera Obscura adalah awal dari kecanggihan masa kini dalam dunia fotografi yang ditemukan oleh seorang muslim bernama Al-Haitam atau sering disebut Alhazen. Peradaban dunia telah banyak berubah melalui kamera.

Karena kamera adalah penemuan penting yang mampu mengubah dunia. Lewat jepretan kamera kita semua dapat mengabadikan momen-monem indah di dunia, hal-hal penting maupun tidak penting di dunia dan yang kita alami.
Tak banyak yang tahu akan seorang penemu muslim Al-Haitam ini, dikarenakan teknologi saat ini dikuasai oleh orang barat, sehingga menyangka bahwa kamrea awal ditemukan oleh orang barat, padahal bukan.

Jauh sebelum masyarakat Barat menemukannya, prinsip-prinsip dasar pembuatan kamera telah dicetuskan seorang sarjana Muslim sekitar 1.000 tahun silam. Peletak prinsip kerja kamera itu adalah seorang saintis legendaris Muslim bernama Ibnu al-Haitham. Pada akhir abad ke-10 M, al-Haitham berhasil menemukan sebuah kamera obscura.

Dunia mengenal al-Haitham sebagai perintis di bidang optik yang terkenal lewat bukunya bertajuk Kitab al-Manazir (Buku optik). Untuk membuktikan teori-teori dalam bukunya itu, sang fisikawan Muslim legendaris itu lalu menyusun Al-Bayt Al-Muzlim atau lebih dikenal dengan sebutan kamera obscura, atau kamar gelap.



Kemudian orang barat mempelajari bukunya dan mengembangkan kamera obscura dengan beberapa hal seperti yang dilakukan oleh Joseph Kepler (1571 – 1630 M). Kepler meningkatkan fungsi kamera itu dengan menggunakan lensa negatif di belakang lensa positif, sehingga dapat memperbesar proyeksi gambar (prinsip digunakan dalam dunia lensa foto jarak jauh modern).

Setelah itu, Robert Boyle (1627-1691 M), mulai menyusun kamera yang berbentuk kecil, tanpa kabel, jenisnya kotak kamera obscura pada 1665 M. Setelah 900 tahun dari penemuan al-Haitham pelat-pelat foto pertama kali digunakan secara permanen untuk menangkap gambar yang dihasilkan oleh kamera obscura. Foto permanen pertama diambil oleh Joseph Nicephore Niepce di Prancis pada 1827.

2. Daguerreotypes dan Calotypes.

Louis Daguerre dan Joseph Nicéphore Niépce menemukan metode fotografi praktis pertama, yang bernama Daguerreotype, pada 1836. Daguerre dilapisi pelat tembaga dengan perak, kemudian tambahkan dengan uap yodium untuk membuatnya sensitif terhadap cahaya.

Gambar itu dihasilkan oleh uap merkuri dan dengan larutan kuat garam biasa (natrium klorida). Henry Fox Talbot menyempurnakan proses yang berbeda, calotype, pada 1840. Kedua kamera yang digunakan sedikit berbeda dari model yang Zahn, dengan piring peka atau selembar kertas ditempatkan di depan layar monitor untuk merekam gambar. Berfokus pada umumnya melalui kotak geser.

3. Dry Plates.



Pelat kering collodion telah ada sejak 1855, berkat karya Désiré van Monckhoven, hingga sampai ada penemuan baru dari pelat kering gelatin pada tahun 1871 oleh Richard Leach Maddox dengan kecepatan dan kualitas lebih baik. Juga, untuk pertama kalinya, kamera bisa dibuat cukup kecil untuk dipegang tangan, atau bahkan tersembunyi. Ada proliferasi dari berbagai desain, dari refleks tunggal dan lensa ganda untuk kamera besar dan kamera genggam.

4. Kodak dan Lahirnya Film.



Penggunaan film fotografi dipelopori oleh George Eastman, dimulai dari kertas film manufaktur pada 1885 sebelum beralih ke seluloid pada tahun 1889. Kamera pertamanya, yang ia disebut "Kodak," pertama kali ditawarkan untuk dijual pada tahun 1888. Itu adalah kotak kamera yang sangat sederhana dengan lensa fixed-focus dan kecepatan rana tunggal, dengan harga yang relatif rendah.

Pada tahun 1900, Eastman mengambil pasar massal fotografi satu langkah lebih jauh dengan Brownie, kotak kamera sederhana dan sangat murah yang memperkenalkan konsep snapshot.

5. Compact Camera dan Canon.

Oskar Barnack, yang bertanggung jawab atas penelitian dan pengembangan di Leitz, memutuskan untuk menyelidiki dengan menggunakan 35 mm film cine untuk kamera dalam percobaannya untuk membangun sebuah kamera kompak yang mampu membuat pembesaran berkualitas tinggi.

Dia membangun prototipe kamera 35 mm nya (Ur-Leica) sekitar tahun 1913, meskipun pengembangan lebih lanjut ditunda selama beberapa tahun akibat Perang Dunia I. Leitz diuji pasarkan antara tahun 1923 dan 1924. Kamera tersebut memperoleh respon sangat baik dari para konsumen sehingga para pesaing pun mulai bermunculan salah satunya adalah Canon yang dibuat oleh Jepang.

Pada tahun 1936 Canon 35 mm menjadi saingan berat, sebuah versi perbaikan dari prototipe Kwanon 1933. Kamera Jepang ini mulai menjadi populer di Barat setelah veteran Perang Korea dan tentara ditempatkan di Jepang membawanya kembali ke Amerika Serikat dan di beberapa tempat lain.

6. TLRs, SLRs dan Nikon.


Kamera pertama dengan refleks praktis dibuat oleh Franke & Heidecke Rolleiflex media dengan nama TLR tahun 1928. Meskipun secara single twin-lens reflex kamera ini tersedia selama beberapa dekade, dengan kepopuleran yang cukup lama.

Sebuah revolusi serupa di desain SLR dimulai pada tahun 1933 dengan pengenalan Ihagee Exakta, SLR kompak yang digunakan 127 rollfilm. Hal ini diikuti tiga tahun kemudian oleh penemu barat pertamakali dengan SLR menggunakan film 35mm, yang Kine Exakta.

Pada tahun 1952 Asahi Optical, perusahaan yang kemudian menjadi terkenal untuk kamera Pentax memperkenalkan SLR Jepang pertama menggunakan film 35mm, yang disebut Asahiflex. Beberapa pembuat kamera Jepang lainnya juga memasuki pasar SLR pada 1950-an, termasuk Canon, Yashica, dan Nikon.

Nikon masuk pasaran dengan nama Nikon F, denga kualitas hasil potret yang sanga baik dan membuatnya populer. Seri F bersama dengan seri sebelumnya S dari kamera pengintai tersebut membuat reputasi Nikon sebagai pembuat peralatan profesional berkualitas.

7. Kamera Analog.


Kamera analog mulai muncul pada tahun 1981 dari Sony Mavica (Magnetic Video Camera). Ini adalah kamera analog, yang mencatat sinyal pixel terus menerus, sebagai mesin rekaman video.

Kamera elektronik Analog berikutnya ditahun 1986 adalah Canon RC-701. Canon pertama kali menjadi kamera untuk memotret Olimpiade 1984, mencetak foto Yomiuri Shinbun, dalam surat kabar Jepang. Di Amerika Serikat, publikasi pertama yang menggunakan kamera ini untuk reportase nyata dalam USA Today, untuk pertandingan Bisbol World Series.

Namun ternyata kamera analog kurang mendapat respon baik karena beberapa faktor seperti biaya mahal (hingga US $ 20.000), kualitas gambar yang buruk dibandingkan dengan film, dan kurangnya printer terjangkau berkualitas.

Kamera elektronik analog pertama dipasarkan ke konsumen mungkin Canon RC-250 Xapshot pada tahun 1988. Sebuah kamera analog terkenal diproduksi pada tahun yang sama adalah Nikon QV-1000C, dirancang sebagai kamera pers dan tidak ditawarkan untuk dijual kepada pengguna umum, yang dijual hanya beberapa ratus unit. Dapat merekam dalam skala abu-abu, dan kualitas di cetak surat kabar sama dengan kamera film. Dalam penampilan itu mirip digital single-lens reflex kamera modern. Gambar yang disimpan pada disket video.

8. Kamera Digital: DSLR serta Kamera Ponsel.


Kamera digital berbeda dari pendahulunya kamera analog terutama tidak menggunakan film, tapi menangkap dan menyimpan foto-foto pada kartu memori digital atau penyimpanan internal. Kamera digital sekarang termasuk kemampuan komunikasi nirkabel (misalnya Wi-Fi atau Bluetooth) untuk mentransfer, mencetak atau berbagi foto, dan juga ditemukan pada ponsel.

Kamera digital pertama dengan gambar direkam sebagai file terkomputerisasi adalah kemungkinan Fuji DS-1P Tahun 1988, yang direkam ke kartu memori 16 MB internal yang digunakan baterai untuk menyimpan data dalam memori. Kamera ini tidak pernah dipasarkan di Amerika Serikat, dan belum dikonfirmasi telah dikirim bahkan di Jepang.

Kamera digital pertama yang benar-benar dipasarkan secara komersial dijual pada bulan Desember 1989 di Jepang, DS-X oleh Fuji.

Kamera digital pertama yang tersedia secara komersial di Amerika Serikat adalah 1.990 Dycam Model 1, itu awalnya gagal komersial karena hanya hitam dan putih, rendah dalam resolusi, dan biaya hampir $ 1.000 (sekitar $ 2000 pada tahun 2013 uang). Ini kemudian hadir Logitech Fotoman pada tahun 1992 yang menggunakan CCD sensor gambar, gambar disimpan secara digital, dan terhubung langsung ke komputer untuk di-download.

Pada tahun 1991, Kodak memasarkan Kodak DCS-100, awal garis panjang kamera profesional Kodak DCS SLR yang sebagian didasarkan pada film Nikons. Kamera ini menggunakan sensor 1,3 megapixel dan dengan harga $ 13.000.

Pindah ke format digital oleh format JPEG dan MPEG standar pada tahun 1988, yang memungkinkan gambar dan file video yang akan dikompresi untuk penyimpanan. Kamera pertama yang dipasarkan untuk konsumen dengan layar kristal cair di bagian belakang adalah Casio QV-10 dikembangkan oleh tim yang dipimpin oleh Hiroyuki Suetaka pada tahun 1995 setelah kamera digital pertama kali dirilis di pasar konsumen yang menggunakan CompactFlash adalah Kodak DC-25 pada tahun 1996.

Tahun 1999 awal pengenalan D1 Nikon, kamera 2,74 megapiksel yang pertama SLR digital yang dikembangkan sepenuhnya oleh produsen besar, dan dengan biaya di bawah $ 6000 pada pengenalan terjangkau oleh fotografer profesional dan konsumen high-end. Kamera ini juga digunakan Nikon F-mount lensa, yang berarti fotografer film bisa menggunakan banyak lensa.

Pada tahun 2010, hampir semua ponsel fitur built-in kamera resolusi tinggi digital video dan banyak kamera fitur built-in GPS, memungkinkan untuk otomatis real-time geotagging.

DSLR:

Digital Single Lens Reflex (Digital SLR atau DSLR) adalah kamera digital yang menggunakan sistem cermin otomatis dan pentaprisma atau pentamirror untuk meneruskan cahaya dari lensa menuju ke viewfinder.

Kamera ini menjadi kamera tercanggih dan terpopuler saat ini, terutama untuk merek Nikon dan Canon. Kamera ini juga sering digunakan untuk studio foto karena kualitas gambarnya yang sangat baik dengan resolusi tinggi.

Berikut Bagian-bagian dari kamera DSLR:

Untuk mengetahui penjelasana mengenai kamera DSLR ini cek langsung di link berikut.

 ASPECT RATIO
Practical limitations In motion picture formats, the physical size of the film area between the sprocket perforations determines the image's size. The universal standard (established by William Dickson and Thomas Edison in 1892) is a frame that is four perforations high. The film itself is 35 mm wide (1.38 in), but the area between the perforations is 24.89 mm×18.67 mm (0.980 in×0.735 in), leaving the de facto ratio of 4:3, or 1.33:1.[3] A 4:3 ratio mimics human eyesight visual angle of 155°h x 120°v, that is 4:3.075, almost exactly the same.
With a space designated for the standard optical soundtrack, and the frame size reduced to maintain an image that is wider than tall, this resulted in the Academy aperture of 22 mm × 16 mm (0.866 in × 0.630 in) or 1.375:1 aspect ratio.

Cinema terminology

The motion picture industry convention assigns a value of 1.0 to the image’s height; an anamorphic frame (since 1970, 2.39:1) is often incorrectly described (rounded) as 2.40:1 or 2.40 ("two-four-oh"). After 1952, a number of aspect ratios were experimented with for anamorphic productions, including 2.66:1 and 2.55:1.[4] A SMPTE specification for anamorphic projection from 1957 (PH22.106-1957) finally standardized the aperture to 2.35:1.[4] An update in 1970 (PH22.106-1971) changed the aspect ratio to 2.39:1 in order to make splices less noticeable.[4] This aspect ratio of 2.39:1 was confirmed by the most recent revision from August 1993 (SMPTE 195-1993).[4]
In American cinemas, the common projection ratios are 1.85:1 and 2.39:1. Some European countries have 1.66:1 as the wide screen standard. The "Academy ratio" of 1.375:1 was used for all cinema films in the sound era until 1953 (with the release of George Stevens's Shane in 1.66:1). During that time, television, which had a similar aspect ratio of 1.33:1, became a perceived threat to movie studios. Hollywood responded by creating a large number of wide-screen formats: CinemaScope (up to 2.66:1), Todd-AO (2.20:1), and VistaVision (initially 1.50:1, now 1.66:1 to 2.00:1) to name just a few. The "flat" 1.85:1 aspect ratio was introduced in May 1953, and became one of the most common cinema projection standards in the U.S. and elsewhere.
The goal of these various lenses and aspect ratios was to capture as much of the frame as possible, onto as large an area of the film as possible, in order to fully utilize the film being used. Some of the aspect ratios were chosen to utilize smaller film sizes in order to save film costs while other aspect ratios were chosen to use larger film sizes in order to produce a wider higher resolution image. In either case the image was squeezed horizontally to fit the film's frame size and avoid any unused film area.[5]

Movie camera systems

Development of various film camera systems must ultimately cater to the placement of the frame in relation to the lateral constraints of the perforations and the optical soundtrack area. One clever wide screen alternative, VistaVision, used standard 35 mm film running sideways through the camera gate, so that the sprocket holes were above and below frame, allowing a larger horizontal negative size per frame as only the vertical size was now restricted by the perforations. There were even a limited number of projectors constructed to also run the print-film horizontally. Generally, however, the 1.50:1 ratio of the initial VistaVision image was optically converted to a vertical print (on standard four-perforation 35 mm film) to show with the standard projectors available at theaters, and was then masked in the projector to the US standard of 1.85:1. The format was briefly revived by Lucasfilm in the late 1970s for special effects work that required larger negative size (due to image degradation from the optical printing steps necessary to make multi-layer composites). It went into obsolescence largely due to better cameras, lenses, and film stocks available to standard four-perforation formats, in addition to increased lab costs of making prints in comparison to more standard vertical processes. (The horizontal process was also adapted to 70 mm film by IMAX, which was first shown at the Osaka '70 Worlds Fair.)
Super 16 mm film is frequently used for television production due to its lower cost, lack of need for soundtrack space on the film itself (as it is not projected but rather transferred to video), and aspect ratio similar to 16:9 (the native ratio of Super 16 mm is 15:9). It also can be blown up to 35 mm for theatrical release and therefore is sometimes used for feature films.

Current video standards

4:3 standard

4:3 (1.33:1) (generally read as "Four-Three", "Four-by-Three", or "Four-to-Three") for standard television has been in use since the invention of moving picture cameras and many computer monitors used to employ the same aspect ratio. 4:3 was the aspect ratio used for 35 mm films in the silent era. It is also very close to the 1.375:1 aspect ratio defined by the Academy of Motion Picture Arts and Sciences as a standard after the advent of optical sound-on-film. By having TV match this aspect ratio, movies originally photographed on 35 mm film could be satisfactorily viewed on TV in the early days of the medium (i.e. the 1940s and the 1950s). When cinema attendance dropped, Hollywood created widescreen aspect ratios (such as the 1.85:1 ratio mentioned earlier) in order to differentiate the film industry from TV. However since the start of the 21st century broadcasters worldwide are phasing out the 4:3 standard entirely, as technology started to favour the 16:9/16:10 aspect ratio of all modern HD TV sets, broadcast cameras and computer monitors.

16:9 standard

Main article: 16:9
16:9 (1.77:1) (generally named as "Sixteen-Nine", "Sixteen-by-Nine" and "Sixteen-to-Nine") is the international standard format of HDTV, non-HD digital television and analog widescreen television PALplus. Japan's Hi-Vision originally started with a 5:3 (= 15:9) ratio but converted when the international standards group introduced a wider ratio of 5⅓ to 3 (= 16:9). Many digital video cameras have the capability to record in 16:9, and 16:9 is the only widescreen aspect ratio natively supported by the DVD standard. DVD producers can also choose to show even wider ratios such as 1.85:1 and 2.39:1[1] within the 16:9 DVD frame by hard matting or adding black bars within the image itself.

21:9

Main article: 21:9 aspect ratio
21:9 aspect ratio, true value of 64:27, is a near cinematic movie ratio.

Obtaining height, width, and area of the screen

Often, screen specifications are given by their diagonal length. The following formulae can be used to find the height (h), width (w) and area (A), where r stands for ratio, written as a fraction, and d for diagonal length.
h=\frac{d}{\sqrt{(r^2+1)}} \qquad w=\frac{d}{\sqrt{\frac{1}{r^2}+1}}  \qquad A=\frac{d^2}{r+\frac{1}{r}}

Distinctions

Further information: Pixel aspect ratio
This article primarily addresses the aspect ratio of images as displayed, which is more formally referred to as the display aspect ratio (DAR). In digital images, there is a distinction with the storage aspect ratio (SAR), which is the ratio of pixel dimensions. If an image is displayed with square pixels, then these ratios agree; if not, then non-square, "rectangular" pixels are used, and these ratios disagree. The aspect ratio of the pixels themselves is known as the pixel aspect ratio (PAR) – for square pixels this is 1:1 – and these are related by the identity:
SAR × PAR = DAR.
Rearranging (solving for PAR) yields:
PAR = DAR/SAR.
For example, a 640 × 480 VGA image has a SAR of 640/480 = 4:3, and if displayed on a 4:3 display (DAR = 4:3), has square pixels, hence a PAR of 1:1. By contrast, a 720 × 576 D-1 PAL image has a SAR of 720/576 = 5:4, but is displayed on a 4:3 display (DAR = 4:3), so by this formula it would have a PAR of (4:3)/(5:4) = 16:15.
However, because standard definition digital video was originally based on digitally sampling analog television, the 720 horizontal pixels actually capture a slightly wider image to avoid loss of the original analog picture. In actual images, these extra pixels are often partly or entirely black, as only the center 704 horizontal pixels carry actual 4:3 or 16:9 image. Hence, the actual pixel aspect ratio for PAL video is a little different from that given by the formula, specifically 12:11 for PAL and 10:11 for NTSC. For consistency, the same effective pixel aspect ratios are used even for standard definition digital video originated in digital form rather than converted from analog. For more details refer to the main article.
In analog images such as film there is no notion of pixel, nor notion of SAR or PAR, and "aspect ratio" refers unambiguously to DAR. Actual displays do not generally have non-square pixels, though digital sensors might; they are rather a mathematical abstraction used in resampling images to convert between resolutions.
Non-square pixels arise often in early digital TV standards, related to digitalization of analog TV signals – whose horizontal and vertical resolutions differ and are thus best described by non-square pixels – and also in some digital videocameras and computer display modes, such as Color Graphics Adapter (CGA). Today they arise particularly in transcoding between resolutions with different SARs.
DAR is also known as image aspect ratio and picture aspect ratio, though the latter can be confused with pixel aspect ratio.

Visual comparisons

Comparing two different aspect ratios poses some subtleties – when comparing two aspect ratios, one may compare images with equal height, equal width, equal diagonal, or equal area. More amorphous questions include whether particular subject matter has a natural aspect ratio (panoramas being wide, full-length images of people being tall), or whether a particular ratio is more or less aesthetically pleasing – the golden ratio (~1.618) is seen as especially pleasing. Of common display formats, 16:10 (8/5) is the closest to the golden ratio, and 15:9 is the closest film format.
Given the same diagonal, the 4:3 screen offers more (over 12%) area, because it is closer to square (which provides the maximum area for a given diagonal measurement). For CRT-based technology, an aspect ratio that is closer to square is cheaper to manufacture. The same is true for projectors, and other optical devices such as cameras, camcorders, etc. For LCD and Plasma displays, however, the cost is more related to the area, so producing wider and shorter screens yields the same advertised diagonal but less area, and hence is more profitable.
The following compares crops of a given image at 4:3 and 16:9, with different parameters equal; note that in terms of subject, the squarer aspect ratio emphasizes the public square, while the wider aspect ratio emphasizes the wide building.
  • Two aspect ratios compared with images using the same diagonal size:
4:3 (1.33:1)
16:9 (1.77:1)
  • Two aspect ratios compared with images using the same area (number of pixels):
4:3 (1.33:1)
16:9 (1.77:1)
  • Two aspect ratios compared with images using the same height (vertical size):
4:3 (1.33:1)
16:9 (1.77:1)
  • Two aspect ratios compared with images using the same width (horizontal size):
4:3 (1.33:1)
16:9 (1.77:1)
 

Sejarah perekam media

Kamera perekam pada awalnya dirancang untuk siaran televisi yang besar dan berat, diletakkan pada sebuah tiang khusus, dan dengan kabel yang tersambung pada pengendali perekam yang berada pada ruang terpisah. Sebagai teknologi modern, merekam video pada ruang terbuka dimungkinkan dengan menggunakan kamera video dan perekam video portabel. Unit perekam dapat dipisahkan dari kamera dan dibawa ke lokasi yang berada pada ruang terbuka. Sementara kamera itu sendiri bisa sangat padu, faktanya bahwa kamera perekam terpisah harus dilakukan oleh dua orang sepanjang pemakaian pada-lokasi syuting.[6] Perekam video kaset pertama kali diperkenalkan oleh JVC (VHS) dan Sony (U-matic dan Betamax) yang bertujuan agar dapar digunakan secara lebih praktis dan mudah dipindahkan.
  • Pada tahun 1982 Sony merilis sistem Betacam. Dimana dalam sistem ini terdapat unit tunggal kamera perekam, yang telah memisahkan antara kabel, kamera dan perekam dan secara dramatis meningkatkan kebebasan juru kamera. Betacam dengan cepat menjadi standar untuk baik untuk pengumpulan berita, maupun pengeditan di-studio video.
  • Pada tahun 1983 Sony merilis kamera perekam konsumen pertama, yaitu Betamovie BMC-100P. Menggunakan kaset Betamax dan tidak bisa dipegang dengan satu tangan,sehingga biasanya alat ini diletakkan di bahu. Sony pada tahun yang sama mengeluarkan kamera perekam pertama mereka dengan format VHS-C JVC.[7]
  • Pada tahun 1985, Sony muncul dengan format video kaset yang lebih baik, yaitu Video8. Kedua itu format memiliki kelebihan dan kekurangan, dan tidak ada satu pun yang unggul dari format-format tersebut.
  • Pada tahun 1985 Panasonic, RCA, dan Hitachi mulai memproduksi kamera perekam yang direkam ke dalam sebuah kaset VHS berukuran penuh dengan menawarkan waktu perekaman hingga tiga jam. Hal ini menyebabkan peningkatan kamera perekam dalam inovasinya menciptakan teknologi yang mutakhir, yaitu dengan menemukan videophiles, videographers industri, dan studio TV perguruan tinggi. Kamera perekam Super VHS ukuran penuh, dirilis pada tahun 1987 yang kualitas penyiarannya semakin luas dan mendukung cara murah untuk mengumpulkan berita atau segmen videografis.
  • Pada tahun 1986 Sony memperkenalkan format video digital pertama, D1. Video direkam dalam bentuk yang tidak terkompres dan mensyaratkan penggunaan bandwidth besar pada saat itu. Pada tahun 1992 Ampex menggunakan bentuk D1 untuk menciptakan DCT, format video digital pertama yang menggunakan kompresi data. Kompresinya menggunakan algoritma bentuk pemisahan kosinus, yang mana nantinya akan digunakan dalam format video digital komersil paling modern.
  • Pada tahun 1995 Sony, JVC, Panasonic dan produser video lainnya meluncurkan kamera DV, yang dengan cepat menjadi standar de-facto untuk produksi rumah video, untuk pembuatan film independen dan jurnalisme warga. Pada tahun yang sama Ikegami memperkenalkan Editcam - sistem video pertama dengan rekaman tapeless.
  • Pada tahun 2000 Panasonic meluncurkan DVCPRO HD, memperluas DV Codec untuk mendukung definisi tinggi. Format ini dimaksudkan untuk digunakan di kamera perekam profesional dan menggunakan kaset DVCPRO ukuran penuh. Pada tahun 2003 Sony, JVC, Canon dan Sharp memperkenalkan HDV, format video pertama dengan kualitas tinggi dan benar-benar terjangkau, karena menggunakan kaset MiniDV murah.
  • Pada tahun 2003 Sony merintis XDCAM, format video pertama tapeless, yang menggunakan Profesional Disc sebagai media perekaman. Panasonic kemudian mengikutinya pada tahun depan, dengan menawarkan kartu memori P2 sebagai media untuk merekam video DVCPRO HD.
  • Pada tahun 2006, Panasonic dan Sony memperkenalkan AVCHD sebagai format video murah dengan kualitas tinggi. Saat ini, kamera perekam AVCHD diproduksi oleh Sony, Panasonic, Canon, JVC dan Hitachi.
  • Pada tahun 2007 Sony memperkenalkan EX XDCAM, yang menawarkan mode perekaman mirip dengan XDCAM HD, namun rekaman disimpan dalam memori SxS.

Analog dan Digital

Hal yang dapat membedakan antara kamera perekam analog dan digital ialah materi penyimpanannnya. Kamera perekam Analog bekerja dengan kaset video, termasuk VHS dan VHS-C. Ini akan mengevaluasi gambar dan audio, disimpan secara analog pada kaset. Selain itu, video dari kamera perekam analog tidak langsung dipindahkan ke komputer melalui kabel USB atau Firewire.
Sedangkan kamera perekam digital menyimpan video rekamannya dalam bentuk digital pada sebuah media simpan digital seperti kartu memori, hard disk dan sebagainya. Rekaman yang disimpan dalam bentuk digital bisa langsung dipindahkan ke computer dengan kabel USB atau lainnya dan dapat diolah secara langsung di komputer.

Peninjauan

Kamera perekam mengandung 3 komponen utama: lensa, Imager, dan perekam. Lensa mengumpulkan dan memfokuskan cahaya pada imager. Imager (biasanya sensor CCD atau CMOS pada kamera perekam modern; contoh yang sebelumnya sering digunakan adalah tabung Vidicon) mengubah insiden cahaya menjadi sinyal listrik. Akhirnya, perekam mengkonversi sinyal listrik menjadi video dan menyalinnya ke dalam bentuk storable. Lebih umum, optik dan Imager yang disebut sebagai bagian dari kamera.

Lensa

Lensa merupakan komponen utama dalam pencahayaan. Optik kamera perekam umumnya memiliki satu atau lebih dari penyesuaian berikut:
Dalam unit kamera konsumen, penyesuaian di atas sering secara otomatis dikendalikan oleh kamera perekam elektronik, tetapi dapat disesuaikan secara manual jika diinginkan. Sedangkan , unit Profesional menawarkan kendali pengguna langsung dari semua fungsi optik utama.

Imager

Imager mengkonversi cahaya menjadi sinyal listrik. Proyeksi lensa kamera sebuah gambar ke permukaan, mengekspos array sensitif terhadap cahaya. Eksposur cahaya diubah menjadi muatan listrik. Setelah proses eksposur, Imager mengkonversi secara berkelanjutan akumulasi biaya tegangan analog pada terminal output Imager itu. Setelah pengecekan selesai, photosites diatur untuk dinyalakan kembali untuk memulai proses paparan video-frame berikutnya.

Perekam

Perekam bertanggung jawab untuk menulis sinyal video ke media perekam. Fungsi dari perekaman banyak melibatkan tahapan proses sinyal (seperti video magnetik.), dan seperti sejarahnya, proses merekam memiliki beberapa distorsi dan gangguan sebelum ahirnya dapat menjadi sebuah video yang disimpan, seperti playback sinyal yang dapat menyebabkan apa yang terekam tidak akan menjadi sama persis seperti apa yang sebenarnya terjadi.
Semua kamera perekam, kecuali mungkin salah satu jenis yang kuno, dianggap perlu untuk memiliki bagian perekam-pengendalian yang memungkinkan pengguna untuk mengontrol kamera perekam, ubah kamera ke playback mode untuk meninjau gambar yang sudah direkam. Dan bagian pengendalian untuk mengendalikan eksposur, fokus dan keseimbangan warna dari gambar.

Kegunaan

Media

Kamera perekam ditemukan telah digunakan pada hampir seluruh bidang media elektronik, dari organisasi berita elektronik hingga TV / produksi. Dalam lokasi yang jauh dari infrastruktur distribusi, kamera perekam tidak ternilai untuk akuisisi video awal. Selanjutnya, video tersebut ditransmisikan secara elektronik ke sebuah studio / pusat produksi untuk disiarkan. Acara seperti konferensi pers resmi, di mana infrastruktur video tersedia atau telah dipersiapkan sebelumnya, masih menggunakan kamera video tipe studio produksi.

Video Pribadi

Untuk penggunaan sehari-hari dalam kehidupan, kamera perekam sering digunakan untuk merekam momen-momen penting seperti pernikahan, ulang tahun, upacara wisuda, anak-anak tumbuh dewasa, dan momen pribadi lainnya.

Hiburan dan Film

Dalam dunia perfilman, kamera perekam menjadi alat utama dalam pembuatan film. Dari mulai film berbudget rendah hingga film berbdget tinggi seperti film Star Wars. Tentunya kamera perekam juga digunakan dalam program-program hiburan televisi seperti reality show atau sebagainya.

Jurnalistik

Seiring dengan perkembangan jurnalisme. Visual atau gambaran dari sebuah berita atau kejadian berita menjadi amatlah penting, apalagi di zaman serba modern ini. Dalam industri jurnalistik kamera perekam juga menjadi alat utama dalam meliput berita, lalu ditayangkan diberbagai media seperti TV atau internet.
sumber : http://id.wikipedia.org/wiki/Kamera_perekam

FRAME PERSECOND  /fps
Arti istilah Frame per Second dianggap berkaitan erat dengan pengertian berikut
Disingkat dengan FPS. Jumlah bingkai gambar yang ditunjukkan dalam satu detik untuk gambar bergerak.
Untuk mengukur performa keseluruhan dari sebuah kartu grafis dapat menggunakan frame rates sebagai acuannya. Frame rate adalah Jumlah bingkai gambar atau frame yang ditunjukkan setiap detik dalam membuat gambar bergerak, diwujudkan dalam satuan fps (frames per second), makin tinggi angka fps-nya, semakin mulus gambar bergeraknya. Game dan film biasanya tinggi fps-nya. Frame rate menggambarkan berapa banyak gambar yang diselesaikan oleh kartu grafis dan ditampilkan dalam frame pada setiap detiknya. Ketika serangkaian gambar mati yang bersambung dilihat oleh mata manusia, maka suatu keajaiban terjadi. Jika gambar-gambar tersebut dimainkan dengan cepat maka akan terlihat sebuah pergerakan yang halus, inilah prinsip dasar film, video dan animasi. Jumlah gambar yang terlihat setiap detik disebut dengan frame rate. Diperlukan frame rate minimal sebesar 10 fps (frame rate per second) untuk menghasilkan gambar pergerakan yang halus.

Pc Games , images ,Movies itu sudah smooth dan enak dinikmati di range fps 25-30.

Penggunaan Fraps ini bisa sangat useful, sekaligus Racoooon … ada kecenderungan untuk kita terlalu fokus mengamati naik turunnya FPS di beberapa area saat gaming. Ini namanya bukan gaming dong? Tapi pengamatan terhadap “number and number”. Salah-salah anda malah berhenti main game, dan berencana ganti hardware yang lebih kuat untuk mendapatkan fps yang tinggi. NOPE! Itu namanya melenceng dari tujuan gaming dan menyiksa diri anda sendiri, jadi bijaksanalah menggunakan Fraps. Ingat, 30fps sudah nyaman secara garis besar (tapi jika ada dana, ya upgrade itu gak tabu kok, LoL)

Lalu bagaimana menggunakan Fraps secara bijaksana untuk pendukung alat gaming kita? GRAPHIC OPTION. Anda akan sangat terbantu performa fpsnya apabila mau menilik kembali kemampuan PC anda terutama VGA. Saya tidak akan membahas VGA di sini, pokoknya ada harga ada barang deh,Back to FPS. … jadi apabila anda kurang nyaman saat bermain game dengan laporan 20an fps ato kurang, maka sebaiknya anda menurunkan presentasi graphical dari game itu. Urutannya adalah sebagai berikut (dari yang paling berpengaruh terhadap fps berdasarkan pengalaman) :

* Antialiasing atau AA: kurangi, ato matikan saja apabila berat
* Resolusi, TIPS: kalikan panjang dan tinggi dengan kalkulator untuk hasil pembenanan pixel, makin besar tentu makin membunuh VGA anda. Hint: 1280x1024 adalah seberat 1440x900
* Matikan VSync (pembahasan VSync ada setelah ini)
* Shadow: sudah dari jaman bahola, shadow itu overkill
* Lighting dan HDR: membutuhkan komputasi yang rumit
* Shader: efek-efek tempelan kosmetik yang canteeek, juga membutuhkan komputasi yang rumit
* Texture detail, ini lebih ke RAM/memory, baik di VGA maupun chace dari system memori

Sudah … selanjutnya silahkan anda bereksperimen sendiri mengkombinasikan yang terbaik antara eye candy vs FPS vs Comfort itu sendiri

Berikut adalah chart tentang angka frame-rate-per-second terahdap kenyamanan gaming :http://2.bp.blogspot.com/_PPc4XRFx6Mw/Sf…w/s1600-h/1.png

VSync
Apa itu VSync, adalah Vertical Synchronization. Yakni nge-LOCK fps ke angka Refresh Rate monitor anda. Misal monitor anda set di refresh rate 60Hz, maka fps akan locked di max 60fps saja. Min dan average fps bisa bervariasi.

Side effect positive dari VSync adalah hilangnya TEARING, yakni garis horizontal yang kerap muncul di beberapa game. Lalu side positive lain adalah kenyamanan mata, tentu ini untuk game-game yang berjalan ratusan fps di PC anda. Daripada anda nanti mabok 3D karena gambar tampil lebih cepat daripada control, sebaiknya anda nyalakan VSync.

Namun ada sisi lain yang perlu diperhatikan akan penggunaan VSync ini. Ada beberapa game yang ternyata mengalami mouse-lag apabila mengaktifkan VSync (missal Dead Space PC). Dan janganlah sekali-kali menyalakan VSync apabila VGA anda kedodoran di sebuah game, misal under 30fps, di sini akan sangat konyol apabila anda menyalakan VSync.
  sumber : http://rinocomp2.blogspot.com/2011/06/pengertian-frame-per-second-fps.html


 

Mirrorless Camera, generasi terbaru teknologi kamera

Pernah nggak sih sebel harus bawa-bawa kamera DSLR pas jalan-jalan karena bikin berat pundak? Atau sebel liat hasil foto kamera saku yang nggak sesuai harapan kita? Ada nggak sih kamera yang seringan kamera saku tapi berkemampuan DSLR? Jawabannya ada ajah atau ada banget. Sejak empat tahun yang lalu, para produsen kamera besar di Jepang telah membuat varian kamera baru yang disebut dengan mirrorless interchangeable-lens camera. Hmmmm jenis apalagi ya...yuk, kita bahas.

Mirrorless Interchangeble-lens Camera (MILC) adalah kamera yang dapat menggunakan lensa dan berkualitas DSLR dengan bodi yang kecil dan ringan atau istilah saya adalah kamera saku rasa DSLR. Sama seperti kamera DSLR, mempunyai sensor yang besar hanya tidak memiliki cermin pemantul ke eyefinder/ teropong. Penghilangan cermin inilah (mirrorless) yang membuat bodi dari kamera menjadi ramping seperti sistem di kamera prosummer, kamera saku yang sangat canggih tapi tidak bisa diganti lensanya. Beberapa merek terkenal mengeluarkan model kamera mirrorless , sebut saja Pentax, Leica, Nikon, Panasonic, Fuji, Sony, Samsung dan yang paling akhir adalah Canon EOS M.
EOS M - 22mm Mirrorless Lense
Investasi terbesar dalam fotografi terletak pada lensa-lensa dengan berbagai kebutuhannya, oleh karena itu beberapa merek terkenal membuat kamera mirrorless ini compatible dengan lensa-lensa kelas wahid. Sebut saja Nikon yang kompatibel dengan Nikkor ataupun Canon dengan seri-seri lensanya yang sudah dikenal mendunia. Beberapa merek menyediakan adaptor untuk dapat memakai lensa-lensa andalannya, tetapi ada beberapa kekurangan. Contohnya Sony NeX yang mempunyai adaptor sehingga kamera bisa memakai lensa produk lain tetapi fungsi auto focusnya tidak dapat digunakan.

Samsung NX mengemas kamera mirrorless nya dengan seabrek kecanggihan, desain warna yang mencolok, dan harga yang terjangkau. Dengan bluetooth handphone Samsung, kita bisa meremote kamera dari jarak jauh. Sayangnya, samsung hanya menyediakan lensa sendiri. Setiap kamera mirrorless dilengkapi lensa kit dengan ukuran berbeda dan hanya bisa digunakan di jenis mirrorless. Lensa ini disebut dengan pancake, karena bentuknya yang pipih dan bulat seperti kue pancake. Desain ini disesuaikan dengan bodi kamera yang sudah ramping dan tidak membutuhkan cermin sebagai pemantul ke view finder. Lensa pancake ini sangat lembut dalam autofocus dan motornya sangat bergerak cepat. Pengoperasian kamera ini menggunakan display touch screen karena harus meminimalkan ruang dan tombol. Untuk yang biasa memiliki handphone touch screen, tidak akan kesulitan mengoperasikannya. Tapi yang punya jempol jahe semua seperti tangan saya, agak sulit juga untuk beradaptasi. Hasil pemotretan sudah jelas tidak usah diragukan lagi karena seluruh kecanggihan kamera DSLR beserta lensanya sudah tertanam di kamera ini, tinggal orangnya aja yang bisa mendapatkan moment atau tidak hehehehheheh....

Kamera mirrorless sangat cocok untuk dibawa travelling karena ringkas dan ringan. Untuk pemotretan serius juga okay karena fitur-fiturnya yang sama dengan DSLR. Atau sekedar untuk narsis atau having fun, bisa juga tuh, karena kamera ini mempunyai filter dan efek yang unik seperti lomo, toy camera, fish eye, dll. So, buat yang mau berencana beli kamera, bisa dipertimbangkan lagi jenis kamera mana yang anda suka, Kamera Saku canggih, DSLR yang rumit atau Kamera saku rasa DSLR.....

Catatan :
  • Kalo pilihan saya jatuh pada Canon EOS M. Saya jatuh cinta dengan Canon EOS M, padahal kamera ini tidak mempunyai flash, tidak mempunyai viewfinder dan lambat dalam auto focus. Tapi, saya memilihnya karena saya ingin memaksimalkan lensa-lensa Canon yang dimiliki oleh teman-teman dan suami. Jadi sebetulnya saya hanya invest dalam membeli kameranya saja.
canon eos m

  • Bentuknya yang kecil dan ringkas sehingga tidak membuat perhatian ketika melakukan pemotretan.
  • Masih ingat dengan lensa manual jadul jaman bapak atau mungkin kakek kita, dengan kamera ini lensa-lensa tersebut bisa digunakan kembali dan lihat saja hasilnya..... fantastis....
  •  
     
     
     
     
     
     
     
Saya mencoba beberapa kali memotret menggunakan kamera ini. Masih banyak hal yang harus dipelajari untuk bisa diposting di blog. Berikut ini beberapa hasil memotret dengan kamera Canon EOS M, mangga dinikmati...
 
 

Tidak ada komentar:

Posting Komentar